Mathematical Special Functions
The technical term 'Special Functions' includes several families of
transcendental functions, which have important applications in particular
branches of mathematics and physics.
The gamma and related functions, and the error function are crucial for
mathematical statistics.
The Bessel and related functions arise in problems involving wave propagation
(especially in optics).
Other major categories of special functions include the elliptic integrals
(related to the arc length of an ellipse), and the hypergeometric functions.
The Gamma function, Γ(x)
Γ(x) is a generalisation of the factorial function
to real and complex numbers.
Like x!, Γ(x+1) = x * Γ(x).
Mathematically, if z.re > 0 then
Γ(z) = ∫0∞ tz-1e-t dt
x | Γ(x) |
---|---|
NAN | NAN |
±0.0 | ±∞ |
integer > 0 | (x-1)! |
integer < 0 | NAN |
+∞ | +∞ |
-∞ | NAN |
The sign of Γ(x).
Returns -1 if Γ(x) < 0, +1 if Γ(x) > 0,
NAN if sign is indeterminate.
Note that this function can be used in conjunction with logGamma(x) to
evaluate gamma for very large values of x.
Incomplete beta integral
Returns incomplete beta integral of the arguments, evaluated
from zero to x. The regularized incomplete beta function is defined as
betaIncomplete(a, b, x) = Γ(a + b) / ( Γ(a) Γ(b) ) *
∫0x ta-1(1-t)b-1 dt
and is the same as the the cumulative distribution function.
The domain of definition is 0 <= x <= 1. In this
implementation a and b are restricted to positive values.
The integral from x to 1 may be obtained by the symmetry
relation
betaIncompleteCompl(a, b, x ) = betaIncomplete( b, a, 1-x )
The integral is evaluated by a continued fraction expansion
or, when b * x is small, by a power series.
Inverse of incomplete beta integral
Given y, the function finds x such that
betaIncomplete(a, b, x) == y
Newton iterations or interval halving is used.
Incomplete gamma integral and its complement
These functions are defined by
gammaIncomplete = ( ∫0x e-t ta-1 dt )/ Γ(a)
gammaIncompleteCompl(a,x) = 1 - gammaIncomplete(a,x)
= (∫x∞ e-t ta-1 dt )/ Γ(a)
In this implementation both arguments must be positive.
The integral is evaluated by either a power series or
continued fraction expansion, depending on the relative
values of a and x.
Inverse of complemented incomplete gamma integral
Given a and p, the function finds x such that
gammaIncompleteCompl( a, x ) = p.
Error function
The integral is
erf(x) = 2/ √(π)
∫0x exp( - t2) dt
The magnitude of x is limited to about 106.56 for IEEE 80-bit
arithmetic; 1 or -1 is returned outside this range.
Complementary error function
erfc(x) = 1 - erf(x)
= 2/ √(π)
∫x∞ exp( - t2) dt
This function has high relative accuracy for
values of x far from zero. (For values near zero, use erf(x)).
Normal distribution function.
The normal (or Gaussian, or bell-shaped) distribution is
defined as:
normalDist(x) = 1/√ π ∫-∞x exp( - t2/2) dt
= 0.5 + 0.5 * erf(x/sqrt(2))
= 0.5 * erfc(- x/sqrt(2))
To maintain accuracy at values of x near 1.0, use
normalDistribution(x) = 1.0 - normalDistribution(-x).
Inverse of Normal distribution function
Returns the argument, x, for which the area under the Normal probability density function (integrated from minus infinity to x) is equal to p.