The D Programming Language

Templates with which to extract information about types and symbols at compile time.

License
Boost License 1.0.
Authors
Walter Bright, Tomasz Stachowiak (isExpressionTuple), Andrei Alexandrescu, Shin Fujishiro, Robert Clipsham, David Nadlinger, Kenji Hara, Shoichi Kato
Source:
std/traits.d

template  packageName(alias T)

Get the full package name for the given symbol.

Example:
import std.traits;
static assert(packageName!packageName == "std");

template  moduleName(alias T)

Get the module name (including package) for the given symbol.

Example:
import std.traits;
static assert(moduleName!moduleName == "std.traits");

template  fullyQualifiedName(T...) if (T.length == 1)

Get the fully qualified name of a type or a symbol. Can act as an intelligent type/symbol to string converter.

Example:
module mymodule;
import std.traits;
struct MyStruct {}
static assert(fullyQualifiedName!(const MyStruct[]) == "const(mymodule.MyStruct[])");
static assert(fullyQualifiedName!fullyQualifiedName == "std.traits.fullyQualifiedName");

template  ReturnType(func...) if (func.length == 1 && isCallable!func)

Get the type of the return value from a function, a pointer to function, a delegate, a struct with an opCall, a pointer to a struct with an opCall, or a class with an opCall. Please note that ref is not part of a type, but the attribute of the function (see template functionAttributes ).

Example:
import std.traits;
int foo();
ReturnType!foo x;   // x is declared as int


template  ParameterTypeTuple(func...) if (func.length == 1 && isCallable!func)

Get, as a tuple, the types of the parameters to a function, a pointer to function, a delegate, a struct with an opCall, a pointer to a struct with an opCall, or a class with an opCall.

Example:
import std.traits;
int foo(int, long);
void bar(ParameterTypeTuple!foo);      // declares void bar(int, long);

void abc(ParameterTypeTuple!foo[1]);   // declares void abc(long);


template  arity(alias func) if (isCallable!func && variadicFunctionStyle!func == Variadic.no)

Returns the number of arguments of function func.  arity is undefined for variadic functions.

Example:
void foo(){}
static assert(arity!foo==0);
void bar(uint){}
static assert(arity!bar==1);

enum  ParameterStorageClass: uint;
template  ParameterStorageClassTuple(func...) if (func.length == 1 && isCallable!func)

Returns a tuple consisting of the storage classes of the parameters of a function func.

Example:
alias ParameterStorageClass STC; // shorten the enum name


void func(ref int ctx, out real result, real param)
{
}
alias ParameterStorageClassTuple!func pstc;
static assert(pstc.length == 3); // three parameters

static assert(pstc[0] == STC.ref_);
static assert(pstc[1] == STC.out_);
static assert(pstc[2] == STC.none);

These flags can be bitwise OR-ed together to represent complex storage class.


template  ParameterIdentifierTuple(func...) if (func.length == 1 && isCallable!func)

Get, as a tuple, the identifiers of the parameters to a function symbol.

Example:
import std.traits;
int foo(int num, string name);
static assert([ParameterIdentifierTuple!foo] == ["num", "name"]);

template  ParameterDefaultValueTuple(func...) if (func.length == 1 && isCallable!func)

Get, as a tuple, the default value of the parameters to a function symbol. If a parameter doesn't have the default value, void is returned instead.

Example:
import std.traits;
int foo(int num, string name = "hello", int[] arr = [1,2,3]);
static assert(is(ParameterDefaultValueTuple!foo[0] == void));
static assert(   ParameterDefaultValueTuple!foo[1] == "hello");
static assert(   ParameterDefaultValueTuple!foo[2] == [1,2,3]);

enum  FunctionAttribute: uint;
template  functionAttributes(func...) if (func.length == 1 && isCallable!func)

Returns the attributes attached to a function func.

Example:
alias FunctionAttribute FA; // shorten the enum name


real func(real x) pure nothrow @safe
{
    return x;
}
static assert(functionAttributes!func & FA.pure_);
static assert(functionAttributes!func & FA.safe);
static assert(!(functionAttributes!func & FA.trusted)); // not @trusted


These flags can be bitwise OR-ed together to represent complex attribute.


template  isSafe(alias func) if (isCallable!func)

true if func is @safe or @trusted.

Example:
@safe    int add(int a, int b) {return a+b;}
@trusted int sub(int a, int b) {return a-b;}
@system  int mul(int a, int b) {return a*b;}

static assert( isSafe!add);
static assert( isSafe!sub);
static assert(!isSafe!mul);

template  isUnsafe(alias func)

true if func is @system.

Example:
@safe    int add(int a, int b) {return a+b;}
@trusted int sub(int a, int b) {return a-b;}
@system  int mul(int a, int b) {return a*b;}

static assert(!isUnsafe!add);
static assert(!isUnsafe!sub);
static assert( isUnsafe!mul);

template  areAllSafe(funcs...) if (funcs.length > 0)

Scheduled for deprecation in January 2013. It's badly named and provides redundant functionality. It was also badly broken prior to 2.060 (bug# 8362), so any code which uses it probably needs to be changed anyway. Please use allSatisfy(isSafe, ...) instead.

true all functions are isSafe.

Example:
@safe    int add(int a, int b) {return a+b;}
@trusted int sub(int a, int b) {return a-b;}
@system  int mul(int a, int b) {return a*b;}

static assert( areAllSafe!(add, add));
static assert( areAllSafe!(add, sub));
static assert(!areAllSafe!(sub, mul));

template  functionLinkage(func...) if (func.length == 1 && isCallable!func)

Returns the calling convention of function as a string.

Example:
string a = functionLinkage!(writeln!(string, int));
assert(a == "D"); // extern(D)


auto fp = &printf;
string b = functionLinkage!fp;
assert(b == "C"); // extern(C)


enum  Variadic: int;
template  variadicFunctionStyle(func...) if (func.length == 1 && isCallable!func)

Determines what kind of variadic parameters function has.

Example:
void func() {}
static assert(variadicFunctionStyle!func == Variadic.no);

extern(C) int printf(in char*, ...);
static assert(variadicFunctionStyle!printf == Variadic.c);

 no

Function is not variadic.


 c

Function is a C-style variadic function.


 d

Function is a D-style variadic function, which uses _argptr and _arguments.


Function is a  typesafe variadic function.


template  FunctionTypeOf(func...) if (func.length == 1 && isCallable!func)

Get the function type from a callable object func.

Using builtin typeof on a property function yields the types of the property value, not of the property function itself. Still,  FunctionTypeOf is able to obtain function types of properties.

class C
{
    int value() @property;
}
static assert(is( typeof(C.value) == int ));
static assert(is( FunctionTypeOf!(C.value) == function ));

Note:
Do not confuse function types with function pointer types; function types are usually used for compile-time reflection purposes.

template  SetFunctionAttributes(T, string linkage, uint attrs) if (isFunctionPointer!T || isDelegate!T)
template  SetFunctionAttributes(T, string linkage, uint attrs) if (is(T == function))

Constructs a new function or delegate type with the same basic signature as the given one, but different attributes (including linkage).

This is especially useful for adding/removing attributes to/from types in generic code, where the actual type name cannot be spelt out.

Parameters
T The base type.
linkage The desired linkage of the result type.
attrs The desired FunctionAttribute s of the result type.
Examples
template ExternC(T)
    if (isFunctionPointer!T || isDelegate!T || is(T == function))
{
    alias SetFunctionAttributes!(T, "C", functionAttributes!T) ExternC;
}


auto assumePure(T)(T t)
    if (isFunctionPointer!T || isDelegate!T)
{
    enum attrs = functionAttributes!T | FunctionAttribute.pure_;
    return cast(SetFunctionAttributes!(T, functionLinkage!T, attrs)) t;
}

template  isNested(T) if (is(T == class) || is(T == struct) || is(T == union))

Determines whether T has its own context pointer. T must be either class, struct, or union.


template  hasNested(T)

Determines whether T or any of its representation types have a context pointer.


template  FieldTypeTuple(T)

Get as a typetuple the types of the fields of a struct, class, or union. This consists of the fields that take up memory space, excluding the hidden fields like the virtual function table pointer or a context pointer for nested types. If T isn't a struct, class, or union returns typetuple with one element T.


Get the primitive types of the fields of a struct or class, in topological order.

Example:
struct S1 { int a; float b; }
struct S2 { char[] a; union { S1 b; S1 * c; } }
alias RepresentationTypeTuple!S2 R;
assert(R.length == 4
    && is(R[0] == char[]) && is(R[1] == int)
    && is(R[2] == float) && is(R[3] == S1*));

template  hasAliasing(T...)

Returns true if and only if T's representation includes at least one of the following:

  1. a raw pointer U* and U is not immutable;
  2. an array U[] and U is not immutable;
  3. a reference to a class or interface type C and C is not immutable.
  4. an associative array that is not immutable.
  5. a delegate.


template  hasIndirections(T)

Returns true if and only if T's representation includes at least one of the following:

  1. a raw pointer U*;
  2. an array U[];
  3. a reference to a class type C.
  4. an associative array.
  5. a delegate.


template  hasUnsharedAliasing(T...)

Returns true if and only if T's representation includes at least one of the following:

  1. a raw pointer U* and U is not immutable or shared;
  2. an array U[] and U is not immutable or shared;
  3. a reference to a class type C and C is not immutable or shared.
  4. an associative array that is not immutable or shared.
  5. a delegate that is not shared.


True if S or any type embedded directly in the representation of S defines an elaborate copy constructor. Elaborate copy constructors are introduced by defining this(this) for a struct.

Classes and unions never have elaborate copy constructors.


template  hasElaborateAssign(S)

True if S or any type directly embedded in the representation of S defines an elaborate assignment. Elaborate assignments are introduced by defining opAssign(typeof(this)) or opAssign(ref typeof(this)) for a struct or when there is a compiler-generated opAssign (in case S has an elaborate copy constructor or destructor).

Classes and unions never have elaborate assignments.

Note:
Structs with (possibly nested) postblit operator(s) will have a hidden yet elaborate compiler generated assignement operator (unless explicitly disabled).

True if S or any type directly embedded in the representation of S defines an elaborate destructor. Elaborate destructors are introduced by defining ~this() for a struct.

Classes and unions never have elaborate destructors, even though classes may define ~this().


template  hasMember(T, string name)

Yields true if and only if T is an aggregate that defines a symbol called name.


template  EnumMembers(E) if (is(E == enum))

Retrieves the members of an enumerated type enum E.

Parameters
E An enumerated type. E may have duplicated values.
Returns
Static tuple composed of the members of the enumerated type E. The members are arranged in the same order as declared in E.
Note:
An enum can have multiple members which have the same value. If you want to use  EnumMembers to e.g. generate switch cases at compile-time, you should use the std.typetuple.NoDuplicates template to avoid generating duplicate switch cases.
Note:
Returned values are strictly typed with E. Thus, the following code does not work without the explicit cast:
enum E : int { a, b, c }
int[] abc = cast(int[]) [ EnumMembers!E ];
Cast is not necessary if the type of the variable is inferred. See the example below.
Examples
Creating an array of enumerated values:
enum Sqrts : real
{
    one   = 1,
    two   = 1.41421,
    three = 1.73205,
}
auto sqrts = [ EnumMembers!Sqrts ];
assert(sqrts == [ Sqrts.one, Sqrts.two, Sqrts.three ]);


A generic function rank(v) in the following example uses this template for finding a member e in an enumerated type E.
// Returns i if e is the i-th enumerator of E.

size_t rank(E)(E e)
    if (is(E == enum))
{
    foreach (i, member; EnumMembers!E)
    {
        if (e == member)
            return i;
    }
    assert(0, "Not an enum member");
}

enum Mode
{
    read  = 1,
    write = 2,
    map   = 4,
}
assert(rank(Mode.read ) == 0);
assert(rank(Mode.write) == 1);
assert(rank(Mode.map  ) == 2);

template  BaseTypeTuple(A)

Get a TypeTuple of the base class and base interfaces of this class or interface.  BaseTypeTuple!Object returns the empty type tuple.

Example:
import std.traits, std.typetuple, std.stdio;
interface I { }
class A { }
class B : A, I { }

void main()
{
    alias BaseTypeTuple!B TL;
    writeln(typeid(TL));        // prints: (A,I)

}

template  BaseClassesTuple(T) if (is(T == class))

Get a TypeTuple of all base classes of this class, in decreasing order. Interfaces are not included.  BaseClassesTuple!Object yields the empty type tuple.

Example:
import std.traits, std.typetuple, std.stdio;
interface I { }
class A { }
class B : A, I { }
class C : B { }

void main()
{
    alias BaseClassesTuple!C TL;
    writeln(typeid(TL));        // prints: (B,A,Object)

}

template  InterfacesTuple(T)

Get a TypeTuple of all interfaces directly or indirectly inherited by this class or interface. Interfaces do not repeat if multiply implemented.  InterfacesTuple!Object yields the empty type tuple.

Example:
import std.traits, std.typetuple, std.stdio;
interface I1 { }
interface I2 { }
class A : I1, I2 { }
class B : A, I1 { }
class C : B { }

void main()
{
    alias InterfacesTuple!C TL;
    writeln(typeid(TL));        // prints: (I1, I2)

}

Get a TypeTuple of all base classes of T, in decreasing order, followed by T's interfaces.  TransitiveBaseTypeTuple!Object yields the empty type tuple.

Example:
import std.traits, std.typetuple, std.stdio;
interface I { }
class A { }
class B : A, I { }
class C : B { }

void main()
{
    alias TransitiveBaseTypeTuple!C TL;
    writeln(typeid(TL));        // prints: (B,A,Object,I)

}

template  MemberFunctionsTuple(C, string name) if (is(C == class) || is(C == interface))

Returns a tuple of non-static functions with the name name declared in the class or interface C. Covariant duplicates are shrunk into the most derived one.

Example:
interface I { I foo(); }
class B
{
    real foo(real v) { return v; }
}
class C : B, I
{
    override C foo() { return this; } // covariant overriding of I.foo()

}
alias MemberFunctionsTuple!(C, "foo") foos;
static assert(foos.length == 2);
static assert(__traits(isSame, foos[0], C.foo));
static assert(__traits(isSame, foos[1], B.foo));

template  classInstanceAlignment(T) if (is(T == class))

Returns class instance alignment.

Example:
class A { byte b; }
class B { long l; }

// As class instance always has a hidden pointer

static assert(classInstanceAlignment!A == (void*).alignof);
static assert(classInstanceAlignment!B == long.alignof);

template  CommonType(T...)

Get the type that all types can be implicitly converted to. Useful e.g. in figuring out an array type from a bunch of initializing values. Returns void if passed an empty list, or if the types have no common type.

Example:
alias CommonType!(int, long, short) X;
assert(is(X == long));
alias CommonType!(int, char[], short) Y;
assert(is(Y == void));

Returns a tuple with all possible target types of an implicit conversion of a value of type T.

Important note:

The possible targets are computed more conservatively than the D 2.005 compiler does, eliminating all dangerous conversions. For example,  ImplicitConversionTargets!double does not include float.


template  isImplicitlyConvertible(From, To)

Is From implicitly convertible to To?


template  isAssignable(Lhs, Rhs = Lhs)

Returns true iff a value of type Rhs can be assigned to a variable of type Lhs.

 isAssignable returns whether both an lvalue and rvalue can be assigned.

If you omit Rhs,  isAssignable will check identity assignable of Lhs.

Examples
    static assert( isAssignable!(long, int));
    static assert(!isAssignable!(int, long));
    static assert( isAssignable!(const(char)[], string));
    static assert(!isAssignable!(string, char[]));

    // int is assignable to int

    static assert( isAssignable!int);

    // immutable int is not assinable to immutable int

    static assert(!isAssignable!(immutable int));

template  isCovariantWith(F, G) if (is(F == function) && is(G == function))

Determines whether the function type F is covariant with G, i.e., functions of the type F can override ones of the type G.

Example:
interface I { I clone(); }
interface J { J clone(); }
class C : I
{
    override C clone()   // covariant overriding of I.clone()

    {
        return new C;
    }
}

// C.clone() can override I.clone(), indeed.

static assert(isCovariantWith!(typeof(C.clone), typeof(I.clone)));

// C.clone() can't override J.clone(); the return type C is not implicitly

// convertible to J.

static assert(isCovariantWith!(typeof(C.clone), typeof(J.clone)));

T  rvalueOf(T)(__InoutWorkaroundStruct = __InoutWorkaroundStruct.init);
T  lvalueOf(T)(__InoutWorkaroundStruct = __InoutWorkaroundStruct.init);

Creates an lvalue or rvalue of type T for typeof(...) and _traits(compiles, ...) purposes. No actual value is returned.

Note:
Trying to use returned value will result in a "Symbol Undefined" error at link time.
Examples
// Note that `f` doesn't have to be implemented

// as is isn't called.

int f(int);
bool f(ref int);
static assert(is(typeof(f(rvalueOf!int)) == int));
static assert(is(typeof(f(lvalueOf!int)) == bool));

int i = rvalueOf!int; // error, no actual value is returned


template  isBoolean(T)

Detect whether T is a built-in boolean type.


template  isIntegral(T)

Detect whether T is a built-in integral type. Types bool, char, wchar, and dchar are not considered integral.


template  isFloatingPoint(T)

Detect whether T is a built-in floating point type.


template  isNumeric(T)

Detect whether T is a built-in numeric type (integral or floating point).


template  isScalarType(T)

Detect whether T is a scalar type.


template  isBasicType(T)

Detect whether T is a basic type.


template  isUnsigned(T)

Detect whether T is a built-in unsigned numeric type.


template  isSigned(T)

Detect whether T is a built-in signed numeric type.


template  isSomeChar(T)

Detect whether T is one of the built-in character types.


template  isSomeString(T)

Detect whether T is one of the built-in string types.


template  isStaticArray(T)

Detect whether type T is a static array.


template  isDynamicArray(T)

Detect whether type T is a dynamic array.


template  isArray(T)

Detect whether type T is an array.


template  isAssociativeArray(T)

Detect whether T is an associative array type


template  isPointer(T)

Detect whether type T is a pointer.


template  PointerTarget(T : T*)

Returns the target type of a pointer.


alias  pointerTarget = PointerTarget(T : T*);

Scheduled for deprecation. Please use PointerTarget instead.


template  isAggregateType(T)

Detect whether type T is an aggregate type.


template  isIterable(T)

Returns true if T can be iterated over using a foreach loop with a single loop variable of automatically inferred type, regardless of how the foreach loop is implemented. This includes ranges, structs/classes that define opApply with a single loop variable, and builtin dynamic, static and associative arrays.


template  isMutable(T)

Returns true if T is not const or immutable. Note that  isMutable is true for string, or immutable(char)[], because the 'head' is mutable.


template  isInstanceOf(alias S, T)

Returns true if T is an instance of the template S.


template  isExpressionTuple(T...)

Tells whether the tuple T is an expression tuple.


template  isTypeTuple(T...)

Detect whether tuple T is a type tuple.


template  isFunctionPointer(T...) if (T.length == 1)

Detect whether symbol or type T is a function pointer.


template  isDelegate(T...) if (T.length == 1)

Detect whether symbol or type T is a delegate.


template  isSomeFunction(T...) if (T.length == 1)

Detect whether symbol or type T is a function, a function pointer or a delegate.


template  isCallable(T...) if (T.length == 1)

Detect whether T is a callable object, which can be called with the function call operator (...).


template  isAbstractFunction(T...) if (T.length == 1)

Detect whether T is a an abstract function.


template  isFinalFunction(T...) if (T.length == 1)

Detect whether T is a a final function.


template  isNestedFunction(alias f)

Determines whether function f requires a context pointer.


template  isAbstractClass(T...) if (T.length == 1)

Detect whether T is a an abstract class.


template  isFinalClass(T...) if (T.length == 1)

Detect whether T is a a final class.


template  Unqual(T)

Removes all qualifiers, if any, from type T.

Example:
static assert(is(Unqual!int == int));
static assert(is(Unqual!(const int) == int));
static assert(is(Unqual!(immutable int) == int));
static assert(is(Unqual!(shared int) == int));
static assert(is(Unqual!(shared(const int)) == int));

template  ForeachType(T)

Returns the inferred type of the loop variable when a variable of type T is iterated over using a foreach loop with a single loop variable and automatically inferred return type. Note that this may not be the same as std.range.ElementType!Range in the case of narrow strings, or if T has both opApply and a range interface.


template  OriginalType(T)

Strips off all typedefs (including enum ones) from type T.

Example:
enum E : int { a }
typedef E F;
typedef const F G;
static assert(is(OriginalType!G == const int));

template  KeyType(V : V[K], K)

Get the Key type of an Associative Array.

Example:
import std.traits;
alias int[string] Hash;
static assert(is(KeyType!Hash == string));
KeyType!Hash str = "string";   // str is declared as string


template  ValueType(V : V[K], K)

Get the Value type of an Associative Array.

Example:
import std.traits;
alias int[string] Hash;
static assert(is(ValueType!Hash == int));
ValueType!Hash num = 1;   // num is declared as int


template  Unsigned(T)

Returns the corresponding unsigned type for T. T must be a numeric integral type, otherwise a compile-time error occurs.


template  Largest(T...) if (T.length >= 1)

Returns the largest type, i.e. T such that T.sizeof is the largest. If more than one type is of the same size, the leftmost argument of these in will be returned.


template  Signed(T)

Returns the corresponding signed type for T. T must be a numeric integral type, otherwise a compile-time error occurs.


template  mostNegative(T) if (isNumeric!T || isSomeChar!T || isBoolean!T)

Returns the most negative value of the numeric type T.


template  mangledName(sth...) if (sth.length == 1)

Returns the mangled name of symbol or type sth.

 mangledName is the same as builtin .mangleof property, except that the correct names of property functions are obtained.

module test;
import std.traits : mangledName;

class C
{
    int value() @property;
}
pragma(msg, C.value.mangleof);      // prints "i"

pragma(msg, mangledName!(C.value)); // prints "_D4test1C5valueMFNdZi"


template  Select(bool condition, T...) if (T.length == 2)

Aliases itself to T[0] if the boolean condition is true and to T[1] otherwise.

Examples
    // can select types

    static assert(is(Select!(true, int, long) == int));
    static assert(is(Select!(false, int, long) == long));

    // can select symbols

    int a = 1;
    int b = 2;
    alias selA = Select!(true, a, b);
    alias selB = Select!(false, a, b);
    assert(selA == 1);
    assert(selB == 2);

A  select(bool cond : true, A, B)(A a, lazy B b);
B  select(bool cond : false, A, B)(lazy A a, B b);

If cond is true, returns a without evaluating b. Otherwise, returns b without evaluating a.